
Unlocking the Power of
Kubernetes

Handoyo Sutanto
CEO, Lyrid Inc.

About Handoyo
● Director of Solutions building multi-million dollar data

centers and enterprise infrastructure software.
● Over 15 years of data center experience
● Past 4-5 years building:

Scalable enterprise
software

DevOps
infrastructures

Managing DevOps/
Engineering teams

What is Kubernetes?

In more technical terms, Kubernetes is an open-source orchestrator

layer designed for automating the deployment, scaling, and operations

of application containers across clusters of hosts.

To simplify this, Kubernetes is a tool that manages lots of small

computer programs called containers. Containers are like tiny,

self-contained packages that have everything a small part of a

program needs to run. Kubernetes makes sure all these containers are

running properly, can talk to each other, and can be updated or fixed

easily if something goes wrong. It’s like a conductor for an orchestra,

making sure every musician knows when to play their part in a big

symphony.

Key Advantages

In Simple Terms:

● Teamwork Master: Kubernetes is great at making sure all the small parts of a program work together nicely.
● Always Ready: It keeps programs ready to go, even if some parts need a quick fix or update.
● Grows with You: As your program gets more popular, Kubernetes can help it grow without skipping a beat.
● Smart Helper: It can fix problems on its own, like if a part of your program stops working, Kubernetes can restart it without you

having to do anything.

High Availability
& Scalability
Kubernetes ensures that
applications can scale
and remain available to
users even when servers
face disruptions.

Portability &
Flexibility
It can run on various
infrastructures, including
on-premises, hybrid, and
public cloud
environments.

Self-healing
It can automatically
replace, reschedule, and
restart containers that fail
or do not meet
user-defined health
checks.

Automated
Rollouts &
Rollbacks
Kubernetes supports
automated updates and
rollbacks for applications,
which helps maintain
stability and reduce
downtime.

The Benefits of Kubernetes

Make Your
Application Robust

Self Healing
Capabilities

The Container
Advantage Enhanced Security

Simplified Scalability

Kubernetes is Great… But…

Kubernetes Has a High Learning Curve

Companies can deploy
Kubernetes without
understanding every detail of
how it works

Lyrid Kubernetes enables
developers to create
Kubernetes native services.

Decision Fatigue

● The openness and flexibility of
Kubernetes is a double edged
sword.

● This image represents how much
“choices” you will need to make to
just “run” on Kubernetes.

● Image is from
https://devopsdirective.com/

Interactive Path

You Need an Experienced In-House Team

Assembling an in-house
team is a significant
challenge

Lyrid’s automated solutions
handle the challenging parts of
deployment and configuration

Lyrid Cloud Architecture

Demo - Lyrid Kubernetes Platform Partners

Powered by any infrastructures provider near you!

Example of Building and Serving Containers

● Your Code -> Container
Packaging -> Registry -> Create
Kubernetes Definitions
(Deployment, Pod, Service) ->
Create Load Balancer (Nginx) ->
Create Ingress Definition -> Auto
Certificate (LetsEncrypt) ->
Rebuild and Redeploying (CI/CD)

● ~5 minutes of introduction, 30
minutes of instructions, and
another 5 minutes of debugging

● And this is one of the fastest one
that I encountered

https://www.youtube.com/watch?v=XltFOyGanYE

https://www.youtube.com/watch?v=XltFOyGanYE

Lyrid Cloud Platform

01 Easy Deployments
You only need 3-clicks to deploy codes

02 One-Stop Manage Service Solution
We provide managed Kubernetes, databases and object
storage

03 Lowers Barrier of Entry
You don’t need to learn Kubernetes to run Kubernetes

04 Developer Friendly
Eases your DevOps team to deploy codes and manage
your microservices

05 Excellent Local Support
24/7 local support

Demo - Let’s see how we do fare

● One thing we do is that we
prepackaged a lot of “best
practices” that is shown

● Using the platform to show from
code to publish

● And happens in the back

What is DevOps - Lifecycle Culture and Mindset

Just Go with the CI/CD Flow

Upcoming Features - Managed DB-as-a-Services

Contact

Hermon Christian
Y. T.
VP of Business Development
and Operations

hyobel@lyrid.io
+62 81 1305 8351

Address:

Jl. Pluit Indah 168B-G, Pluit Penjaringan,
Jakarta Utara, DKI Jakarta 14450

Socials:

 hello@lyrid.io

 www.lyrid.io

 linkedin.com/company/lyrid

 @lyridinc

Documentation:

https://docs.lyrid.io

Sign up for Free!

Handoyo Sutanto
CEO

hsutanto@lyrid.io
+1 408 660 6871

https://www.linkedin.com/in/hermon-christian-y-tjandi-5456a3b3/
https://www.linkedin.com/in/hermon-christian-y-tjandi-5456a3b3/
mailto:hyobel@lyrid.io
http://wa.me/628113058351
mailto:hello@lyrid.io
http://www.lyrid.io
https://www.linkedin.com/company/lyrid/
https://twitter.com/LyridInc?t=8PFPAV4mRMFBeFBl3AN3AQ&s=08
https://docs.lyrid.io
https://twitter.com/lyridinc
http://linkedin.com/company/lyrid
mailto:hello@lyrid.io
https://www.lyrid.io/id/home
https://www.lyrid.io/id/home
https://www.lyrid.io/id/home
http://wa.me/628113058351

Feedback Form

https://bit.ly/feedback-webinar-may2024

https://bit.ly/feedback-webinar-may2024

Should we even be using Kubernetes?
Step 1

Do you operate many different applications?

Are they containerized or do you plan to containerize
them?

Have you ruled out the Container Service options (Cloud
Run, AppRun, Fargate, etc…)?

YES

NO

PREVIOUS

Use something else!
Step 2 - NO

● Platform as a Service
● Containers as a Service
● Serverless
● Hashicorp Nomad
● One (or a few) VMs

Kubernetes is great, but its not for everyone. You might be
better served with a different approach!

NEXT

PREVIOUS

Should we self-host Kubernetes?
Step 2 - YES

Do you need the upstream features AS SOON AS THEY
ARE RELEASED?!?

Are you required to run on-prem for some reason?

Are you prepared to debug issues with control plane
components should they arise?

YES

NO

PREVIOUS

How should we provision clusters?
Step 3 - YES

● Kubespray
● Kops
● Kubeadm
● Rancher
● Portainer
● Talos

These all come with different levels of automation and
control baked in. Some include provisioning the
underlying infra while others do not.

NEXT

PREVIOUS

How should we provision clusters?
Step 3 - NO

● Google Kubernetes Engine
● Linode Kubernetes Engine
● Elastic Kubernetes Service
● Vultr Kubernetes Engine
● Azure Kubernetes Service
● Digital Ocean Kubernetes

So many options! In addition to the kubernetes service itself you will want to
consider if the cloud provider has any other services you would like to use (e.g
object storage, DB as a service, robust IAM, etc…)

● Civo Kubernetes
● Oracle Kubernetes Engine
● OpenShift
● IBM Kubernetes
● OVHcloud Kubernetes
● Alibaba Cloud Kubernetes
● Tencent Kubernetes

NEXT

PREVIOUS

How should we handle infrastructure as Code?
Step 4

● Terraform
● Cloud Development Kit (CDK)
● CloudFormation
● Pulumi
● Crossplane

Do you care about multi cloud support?

Do the tools you are considering have the resource
coverage you need?

NEXT

PREVIOUS

How should we handle environment isolation?
Step 5

● Namespaces
● Clusters
● Cloud Accounts/Projects

Note: The decision here impacts the level of automation
needed in your IaC confid to be manageable

NEXT

PREVIOUS

Which container registry should we use?
Step 6

● Cloud Provider
● GitHub
● JFrog
● DockerHub

If your cloud provider offers a registry probably go with
that unless you have a compelling reason not to

NEXT

PREVIOUS

How should we package our application?
Step 7

● Raw K8s yaml
● Pulumi
● Naml
● Kustomize
● Helm
● CRDs + Operators
● Shipa

As you deploy across environments you will need some way to manage your
application configurations, ideally with guardrails/best practices included! :)

NEXT

PREVIOUS

Which Version Control System should we use?
Step 8

● GitHub
● GitLab
● Cloud Specific

GitLab has some nice features, but the default choice here is GitHub. If you plan
to use one or the other for CI/CD, go with that

NEXT

PREVIOUS

How should we structure our repos?
Step 9

● Monorepo
● Multi-repo

Monorepo is good for visibility and makes common utilities easier to manage. If
deciding to use Gitops, dedicated config repos are nice

NEXT

PREVIOUS

How should we handle Continuous Integration?
Step 10

● GitHub Actions
● Tekton
● CircleCI
● Jenkins
● GitLab CI
● Dagger
● Spacelift (for IaC)
● Jenkins X

Lots of good options here. Some nice features to look for, local development/
execution story, public ecosystem/shareability, integrations with your VCS

NEXT

PREVIOUS

What about Continuous Delivery?
Step 11

● Pull based (e.g. ArgoCD or Flux)
● Push based (from your CI pipelines)

Pull based (“git ops”) avoids needing cluster credentials in CI and has nice
auto-reconciling properties. Pushed based is simple to get started.

NEXT

PREVIOUS

How to get traffic into the clusters?
Step 12

● Nginx
● Kong
● HAProxy
● Traefik
● LoadBalancer Services

If your needs are simple enough, a LoadBalancer provisioned via cloud controller
manager might be enough. Otherwise you will want to pick something with more
capability.

NEXT

PREVIOUS

What about networking in the cluster?
Step 13

● Cloud Provider Implementation
● Calico
● Cilium
● Flannel
● Weave

If you are using a managed cluster, sticking with the default networking probably
makes sense. Some of the other options do have interesting innovations though
(such as using eBPF rather than iptables)

NEXT

PREVIOUS

Do we need a service mesh? Which one?
Step 14

● None
● Linkerd
● Istio
● Consul

Service meshes improve service discovery security, and observability of
networking within the cluster. Depending on your needs it may be critically
important or unnecessary complexity.

NEXT

PREVIOUS

Can we provide storage to our applications?
Step 15

● Cloud Controller Manager
● Rook

For auto-provisioning block storage, your cloud providers CSI driver will get you
started. For more exotic storage configurations, Rook can reduce operational
overhead.

NEXT

PREVIOUS

How can we get observability in the cluster?
Step 16

● Cloud Provider Services
● Honeycomb
● DataDog
● Self-host ELK, Prometheus, & Grafana
● New Relic

This topic deserves more than one box, but I was running out of space! Logging,
monitoring, and distributed tracing are critical for understanding application
behavior. Each tool has its tradeoffs in capability and $$$.

NEXT

PREVIOUS

How should we handle credentials?
Step 17

● K8s Secrets
● Vault
● Cloud Provider Secret Store

If your use K8s secrets you still need to decide whether to inject as environment
vars or volume mounts. Also you probably still will want a source of truth that
lives outside of the cluster.

NEXT

PREVIOUS

How should we backup our clusters?
Step 18

● Velero
● Kasten
● GitOps Redeploy

In the event of a disaster scenario, you need the ability to restore the state of
your cluster. Velero is great free option, but if you are using GitOps, redeploying
that and pointing it at your configuration repo(s) may be sufficient!

NEXT

PREVIOUS

What about Security?
Step 19

● Snyk
● Aqua
● Kubescape
● Falco
● Various Admission Controllers

In addition to setting up proper RBAC, network policies, etc…, you should add
things like container image + dependency scanning, and checking for/preventing
potential misconfigurations.

NEXT

PREVIOUS

You’re All Set!

Back to Slide 8

PREVIOUS

